
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

THE MIE SCATTERING SERIES AND
CONVERGENCE ACCELERATION

by

Brian E. Johnson

December, 1997

Thesis Advisor:
Second Reader:

James Luscombe
D. Scott Davis

1X3

Approved for public release; distribution is unlimited.

DUG QUALITY WEBEQmD a

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

THE MJE SCATTERING SERIES AND CONVERGENCE ACCELERATION

6. AUTHOR(S)
Johnson, Brian E.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In this thesis we present an algorithm for the precise determination of the Mie extinction efficiency parameter. The mathematical
representation of the Mie parameters is in the form of an infinite series, and any technique that could be found to accelerate the
convergence of the Mie series would have great commercial and military application. Results are presented that show the
comparison of the rate of convergence obtained by directly summing the individual terms of the extinction efficiency parameter
and the rate obtained using an existing series acceleration technique. It was found that the acceleration method we employed,
known as the Levin method of series transformation, proved unsuccessful in accelerating the convergence of the Mie series.
However, other acceleration techniques exist and should be explored.

14. SUBJECT TERMS
Mie scattering, Levin method, series acceleration

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF
PAGES

76

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500

DTIC QUALITY INSPECTED 3

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

THE MIE SCATTERING SERIES AND
CONVERGENCE ACCELERATION

Brian E. Johnson
Lieutenant, United States Navy

B.S., University of California at Davis, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December, 1997

Author:

Approved by:

ß-S/W^ QAfrfWflgrs../
BriaaJE. Johnson

es Luscombe, Thesis Advisor

D. Scott Davis, Second Reader

William B. Maier II, Chairman
Department of Physics

in

IV

ABSTRACT

In this thesis we present an algorithm for the precise determination of the Mie

extinction efficiency parameter. The mathematical representation of the Mie parameters is

in the form of an infinite series, and any technique that could be found to accelerate the

convergence of the Mie series would have great commercial and military application.

Results are presented that show the comparison of the rate of convergence obtained by

directly summing the individual terms of the extinction efficiency parameter and the rate

obtained using an existing series acceleration technique. It was found that the acceleration

method we employed, known as the Levin method of series transformation, proved

unsuccessful in accelerating the convergence of the Mie series. However, other

acceleration techniques exist and should be explored.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
II. THE ME SCATTERING PARAMETERS 7

A. BACKGROUND 7
B. SCATTERING AMPLITUDE PARAMETERS 8
C. SCATTERING EFFICIENCY AND EXTINCTION PARAMETERS 8
D. THE ME COEFFICIENTS 9
E. CALCULATING QM USING ANSI C 11

III. THE LEVIN METHOD 15
A. SERIES ACCELERATION METHODS 15
B. THE E-ALGORITHM 17
C. LEVIN'S TRANSFORMS 18
D. ENCODING THE LEVIN TRANSFORM 20

IV. RESULTS 23
V. CONCLUSION 25
APPENDIX A. ALTERNATING HARMONIC SERIES CODE IN ANSI C 27
APPENDIX B. OUTPUT OF ALTERNATING HARMONIC SERIES CODE 29
APPENDIX C. LEVIN ALGORITHM ON ALTERNATING HARMONIC 31

SERIES
APPENDIX D. ANSI C CODE TO PRODUCE DATA FOR ALTERNATING 33

HARMONIC SERIES PLOT
APPENDIX E. ANSI C CODE TO PRODUCE DATA FOR PLOT OF LEVIN 35

METHOD ON ALTERNATING HARMONIC SERIES
APPENDIX F. MATLAB CODE TO PRODUCE PLOT OF CONVERGENCE 37

OF ALTERNATING HARMONIC SERIES
APPENDIX G. ANSI C CODE TO PRODUCE DATA FOR EXTINCTION 39

EFFICIENCY FACTOR AND CONVERGENCE RATE VS
SIZE PARAMETER

APPENDIX H. MATLAB CODE TO PLOT OUTPUT OF CODE LISTED IN 47
APPENDIX G

APPENDIX! ANSI C CODE FOR CALCULATING EXTINCTION 49
EFFICIENCY FACTOR

APPENDIX J. ANSI C CODE FOR LEVIN ALGORITHM OPERATING ON 57
EXTINCTION EFFICIENCY FACTOR

LIST OF REFERENCES 65
INITIAL DISTRIBUTION LIST 67

Vll

Vlll

I. INTRODUCTION

Mie scattering is the scattering of electromagnetic radiation by primarily spherical

particles whose diameters are comparable to the wavelength of the incident radiation

[Ref. 1: p. 303]. In nature, we see this manifested as the white appearance of clouds. Due

to the distribution of particle sizes in the clouds, the cumulative effect of the Mie scattered

light waves on the water droplets is that the whole spectrum of scattered radiation

combines to make the cloud appear white. In other scenarios which involve the direct

use of modern technology, Mie scattering has many applications where it is of vital

importance to have a highly efficient and reliable algorithm for signal processing and for

analyzing the properties of Mie scattered waves. A few examples include the reflection of

a radar signal off of a cloud of dispersed particles and the absorption and scattering of

radiation from soot particles in the atmosphere [Ref. 2]; Mie scattering as a technique for

the sizing of air bubbles [Ref. 3]; and for remote sensing applications. Further applications

can be found in fields as diverse as astrophysics [Refs. 4 - 5], physical chemistry [Refs. 6-

7], and a unique style of painting that employs the Mie scattering phenomenon [Ref. 8].

In order to determine the amplitude, extinction efficiency, or scattering efficiency

of an electromagnetic wave that has undergone Mie scattering, it is necessary to compute

the mathematical representation of these quantities, or Mie parameters, each of which is

analytically represented by an infinite sum. For the purpose of this thesis research, our

attention has been focused on calculating the Mie parameter known as the extinction

efficiency factor, or Qext, which describes the total effect of scattering and absorption in

removing radiation from the incident beam.

As will be shown later in Chapter IV, the number of terms required for the infinite

series to converge numerically to a given accuracy is directly proportional to the ratio

between the wavelength of the incident radiation and the circumference of the scattering

particle. The thrust of this thesis research has been to determine if this infinite series can

be caused to converge in dramatically fewer iterations through the utilization of a series

acceleration technique. The basic idea is to transform the Mie series into another series

that converges faster. While numerous series acceleration methods are known, one of the

most powerful is known as the Levin method [Ref. 9: p. 35]. The ultimate goal of this

thesis research has been to determine if the Levin method can significantly accelerate the

convergence of the Mie series.

As an example of the power of the Levin method (detailed in chapter 3), consider

the alternating harmonic series that represents the natural logarithm of 2, namely,

m-ftf-H-i... (i)

The convergence of this series is extremely slow. By summing the individual terms of

Eq. (1), over a million and a half terms must be taken to achieve an accuracy of six digits:

1,565,239 terms to be exact. The C code used to determine this value and the program

output are included as Appendices A and B, respectively. By employing the Levin

method, however, the same degree of numerical accuracy can be reached after only six

iterations! The ANSI C code for the Levin method operating on the alternating harmonic

series is included as Appendix C. After the fifteenth term of the Levin method is reached,

the accepted value of accuracy out to the sixteenth digit is obtained [Ref. 10: p. 113].

This is an astounding reduction of computer processing time and is an amazing

demonstration of the power of the Levin method of series acceleration. (We note that, to

obtain eight digit accuracy by straightforward summation of the series would require over

one hundred million terms; nine digit accuracy was effectively unattainable using the

UNIX system resources available for this research.) Table 1 shows a comparison of the

partial sum obtained from Eq. (1) and those calculated with the Levin method. As a

further comparison, the plot shown in Fig. 1 was produced to show the relative speed (i.e.,

number of iterations required) with which the Levin method and the brute force method of

summing the individual terms of the alternating harmonic series converge to 99

ln2 = 0.6931471805599453

Iterations Partial Sum Levin Result
1 1.000000 1.0000000000000000
2 0.500000 0.6666666666666666
3 0.833333 0.6944444444444444
4 0.583333 0.6931372549019608
5 0.783333 0.6931439393939393
6 0.616667 0.6931474019283136
7 0.759524 0.6931471777900349
8 0.634524 0.6931471800150043
9 0.745635 0.6931471806012293
10 0.645635 0.6931471805592415
11 0.736544 0.6931471805598542
12 0.653211 0.6931471805599532
13 0.730134 0.6931471805599452
14 0.658705 0.6931471805599454
15 0.725372 0.6931471805599453

Table 1. Levin Method on Logarithm of 2.

0.99 -1

10 20 30 40 50
Number of iterations

60 70

Figure 1. Levin Method vs. Infinite Series for ln(2)

percent of the correct value of ln(2). Appendices D through F show the pertinent ANSI C

and Matlab code. Note that the Levin method required only three terms to reach 99

percent of the value of ln(2), while summing the individual terms of the series required

sixty-five terms. As a final comparison, the time required to reach six digits of accuracy

using the brute force method was determined (Appendices A and B), and the code used in

Appendix C was altered to determine the number of times the Levin method could reach

the same degree of accuracy in the same time span (11.7 seconds). The value obtained

was approximately 20,000, indicating that in this instance the Levin method is about

20,000 times faster than summing the individual terms of the infinite series.

In light of the preceding example, the question arises as to whether the Levin

method can accelerate the Mie series. A computer program was written to calculate the

individual terms of the infinite series representation of the Mie parameter Qext and to

determine the number of these terms required for the series to converge to an accuracy of

one part in 108. Next, the Levin method was applied to this infinite series, and the number

of iterations of the Levin method required to achieve a similar accuracy was likewise

determined. A comparison of these two results showed that the Levin method did not

succeed in accelerating the convergence of the Mie series. In fact, the number of

iterations required for the Levin method to converge was comparable to that obtained by

simply summing the infinite series representation of the Mie parameter. Considering the

algorithm which the Levin method utilizes, this method when applied to the Mie series will

actually result in increased processor time. Although the Levin method proved

unsuccessful in accelerating the convergence of the Mie series, further research in this area

is still needed as there are other series acceleration methods worth exploring

[Ref. 11: p. 56].

In the next section, we discuss the relevant Mie parameters and the infinite series

for computing the extinction coefficient. In Chapter III we discuss the Levin convergence

acceleration method. In Chapter IV we discuss our results for applying the Levin method

to the Mie series.

II. THE MIE SCATTERING PARAMETERS

A. BACKGROUND

There are four basic Mie scattering parameters. The first two pertain to the

scattering amplitude and describe the complex amplitudes of the perpendicular and parallel

components (with respect to the scattering plane) of the electric field vector. The third

Mie parameter is the scattering efficiency factor, while the fourth parameter is the

extinction efficiency factor. All four of these expressions are given in dimensionless terms,

and the evaluation of these four basic functions relies on the proper evaluation of four

coefficients: the Mie coefficients a„ and b„, and the angular coefficients nn and r„.

These four expressions can be described using three basic parameters: a

dimensionless size x of the scattering sphere, an index of refraction m (usually complex),

and a scattering angle 0 (relative to the forward direction). The dimensionless size

parameter x is given by

x = fo _ (?^L\r _ circumference of sphere
\ A>) wavelength ' ^ '

where k = 2n/A is the wave number, r is the radius of the sphere, and A is the

wavelength of the incident radiation. The complex index of refraction m is given by

m=u-Ki , (3)

where v is the real part of the index of refraction and K is the imaginary part. A complex

refractive index indicates an absorbing sphere, such as soot. A purely real index of

refraction is indicative of a non-absorbing sphere; for the purpose of this thesis research,

only cases of purely real refractive index were considered.

B. SCATTERING AMPLITUDE PARAMETERS

Let the electric field vector amplitude of the scattered radiation field be given by

Asc. This radiation field can in turn be expressed in terms of the scalar perpendicular and

parallel components A\ and A2. We can define dimensionless, complex amplitudes Si and

S2 by multiplying the amplitudes A\ and A2 by the free-space propagation constant k,

which in turn can be represented by an infinite converging series [Ref. 12: p. 13]:

kA2 ^ S2(m,x,ß) = S-T^^.W + ^r.W} • (4b)

The Mie coefficients a„ and b„ are functions of the index of refraction m and the

size x, while the angular coefficients nn and r„ are functions of j^=cos6 only. The latter

coefficients are defined in terms of Legendre polynomials and their derivatives. The

coefficients a„ and b„ are functions of spherical Bessel functions of the first, second, and

third kind, and can be expressed in a variety of ways.

C. SCATTERING EFFICIENCY AND EXTINCTION PARAMETERS

It can be shown that the differential scattering cross section for unit incident flux is

da(m, x,0) = \ Asc ■ A*sc{m, x, &)dco , (5)

where do) is an element of the solid angle.

Following Diermendjian [Ref. 12: p. 13], by representing the unpolarized incident

radiation as the sum of two independent and linearly polarized components of equal flux,

the scattering cross section can be expressed as

o-sca(m,x) = jdo-(m,x,0) = -j(AlA* + A2A*)dco , (6)

where Q = ATT is the solid angle.

The scattering efficiency factor Qsc(m,x) is obtained by normalizing crsca by the

sphere's geometrical cross section m2 :

QscM,x)=^^ = \±(2n + l)(\an\2+\bn\
2) .

m x n=I
(7)

The total extinction cross section and efficiency factor, which includes the

contribution due to absorption, can be similarly defined. This leads to the following

expression for extinction efficiency factor:

Qe«=AiL(2n + l)M"n+K) ■ (8)
X «=1

As noted earlier for the case of a purely real index of refraction m, there will be no

absorption, and thus the extinction efficiency factor Qext will be identically equal to the

scattering efficiency factor Qsca ■

D. THE MIE COEFFICIENTS

The simplest and most elegant expressions for the Mie coefficients are as follows

[Ref. 13: p. 195]:

j„(kr)
a"~hw„(kr) ' (9a)

= krjn{kr)-njn(kr)

" krhn_x{kr)-nhm
n{kr) ' l J

where j„(kr) is a spherical Bessel function of the first kind with order n, h{1)„(kr) is a Bessel

function of the third kind, known as a Hankel function, and is defined as

tiX)
n{kr) = jn{kr) + iyn(kr) , (10)

and yn(kr) is a spherical Bessel function of the second kind with order n.

Another common form of the Mie coefficients is that adopted by van de Hülst

[Ref. 14: p. 123]:

An{Z)y,n{x)-m¥>n{x) (Ha)

b =
mAn(Z)Vn(x)-K(X) (Uh)

" mAn(zKn(x)-Cn(x) ' l ;

where z = mx, while y/n and C,n are Ricatti-Bessel functions which are defined as

follows:

Vn(x) = xj„(x) , (12a)

Z„(x) = -xyn(x) , (12b)

£*(.*) = Vn(x) + izn(x) . (12c)

Here,y„ and^„ are spherical Bessel functions of the first and second kind, respectively.

For computational purposes, it is best to express the Mie coefficients in a form

conducive to separating their real and imaginary components. Through the use of

recursion formulas and circular functions [Ref. 12: p. 16-19], the Mie coefficients may be

written in the alternative form [Ref. 15: pp. 16-17]:

10

ö
m x)

^>+%<*)-C,(*) [m x)

(13a)

\mAJI(z) + -{y/„(x)-y/„_l(x)
bn=± *L . (13b)

|^„(z) + -|^(x)-C1(^)

These forms of the Mie coefiBcients were programmed, using the C language, to determine

the Mie coefficients and hence the extinction efficiency factor Qext.

E. CALCULATING Q^ USING ANSI C

The author wishes to thank the writers of "Numerical Recipes in C" [Ref. 16] for

enabling the circumvention of the reinvention of the wheel, in that their code for

computing ordinary and spherical Bessel functions and their derivatives was utilized in this

thesis research for computing the Mie coefficients and calculating the extinction efficiency

factor. Of noteworthy interest is that said code cites Jerry Lentz of the Naval

Postgraduate School as the author of an improved technique for calculating Bessel

functions through the use of continued fractions.

The code used for calculating the ordinary Bessel functions is incorporated into a

structure which returns the values of the Bessel functions of the first and second kind, and

their first derivatives. The spherical Bessel function code simply generates a normalization

factor, makes a call to the function which calculates ordinary Bessel functions (of half-odd

integer order), then in like fashion returns values of the spherical Bessel functions of the

first and second kind, and their first derivatives. The code for calculating the ordinary

11

Bessel functions also makes calls to two additional functions, "beschb" and "chebev", also

obtained from "Numerical Recipes in C" [Ref. 16]. The "beschb" function is used to

evaluate the gamma functions present in the Bessel function formula, calling the "chebev"

function in the process to perform Chebyshev expansion.

Once the interfacing codes for calculating ordinary and spherical Bessel functions

were brought together, a program was written to assemble the components of the Mie

coefficients as expressed in Eqs. (13a) and (13b). Again, the Mie coefficients are

functions of the dimensionless size parameter x and the index of refraction m.

Next, a loop was created that calculated the individual terms of the extinction

efficiency factor (one of the Mie parameters), each term of which relied on a calculated

value of the Mie coefficients. As is the case of all of the Mie parameters, the extinction

efficiency factor is represented as an infinite sum. Thus, the loop for calculating the

efficiency extinction factor was summed until the value converged to one part in 108.

With each increment of the loop counter, the Bessel functions associated with the Mie

coefficients were of subsequent higher order, i.e., for n=l, J„(x) would be a Bessel

function of the first order; for n=2, Jn{x) would be a Bessel function of the second order,

and so on.

As a test for the accuracy of the code and the correctness of the programming, a

routine was created that calculated the extinction efficiency factor for size parameter x

varying from 0 to 9, using a step size of 0.01 and applying 6 different values for the

refractive index. A plot showing all six curves was produced from the data obtained from

this program and is shown in Fig. 2. This plot very closely resembles that which was

12

produced by Van de Hülst [Ref. 14: p. 151], with the exception that Van de Hulst's plot

was intentionally smoother as a result of not showing fine detail. The C code used to

produce data for Fig. 2 is included as Appendix G, with the output data being sent to a file

called "Qout". The Matlab code used to produce Figure 2 is included as Appendix H.

13

14

III. THE LEVIN METHOD

A. SERIES ACCELERATION METHODS

The main idea behind the Levin method, as in any series acceleration technique, is

to transform a given slowly converging series into another series that converges faster.

We note here the distinction between a sequence and a series. An infinite sequence (S„) is

an unending progression of numbers S„ which may be real or complex. A sequence

converges if a number, S, exists so that, corresponding to every positive number s, no

matter how small, a number n0 can be found such that \Sn -S\<e for n>n0. In this case,

the sequence (S„) is said to converge to the limit S as n tends to infinity. An infinite series,

on the other hand, is the sum of an infinite sequence. Let ux,u2,...,un,... be an infinite

sequence of numbers, real or complex. Let the sum w, + u2 H— un be denoted by S„,

which is called the nth partial sum. Then, if the sequence of partial sums (S„) converges to

a limit, S, the infinite series w, + u2 H— is said to be convergent, or to converge to the

sum S. The connection with the Levin method is to transform the sequence of partial

sums into another sequence that converges faster, i.e., requires fewer terms to converge to

the limit.

Given a sequence of real or complex numbers (S„) which converges to S, this

sequence can be transformed into another sequence (T„). A trivial example of such a

sequence transformation is

Tm=§B±§BiLi « = 0,1,.... (14)

15

To be useful, however, the following properties for the transformed sequence must hold

[Ref. 11: p. 1]:

1. (T„) must converge,

2. (T„) must converge to the same limit as (S„), and

3. (T„) must converge to 5 faster than (&,); that is, lim(r„ - S)/(Sn -S) = Q.

If property 3 holds, the transformation T is said to accelerate the convergence of the

sequence (S„), or that the sequence (T„) converges faster than (S„). An example of a

sequence transformation meeting these three conditions is Aitken's A2 process [Ref. 11:

pp. 1-7]:

or,

" A% " { A2SnJ

W+2 \+l

S„+1 , (15)

Tn= nn+2 s±L_ » = 0,1,... . (16)
Sn+2-2Sn+1+S„'

where A is the difference operator defined by Avn = vn+1 - vn and At+,vn = A*vn+1 - A*vn.

The A in the denominator of Eq. (15) accounts for the process's name.

The Levin transformation, as with most other transformation algorithms, is a

particular case of what is known as the E-transformation, which is the most general

sequence transformation. Transformations belonging to the E-transformation class include

[Ref. 11: p. 56]: Richardson polynomial extrapolation, Shanks' transformation, the Levin

transformation, and many other historically known acceleration methods. We note that

16

series acceleration is an active field of research in numerical analysis, with the Levin

method and E-transformation having been discovered only in the past 25 years.

B. THE E-ALGORITHM

Following Brezinski and Zaglia [Ref. 11: pp. 56-57], the E-transformation is based

on the following relation:

S„-S-algl(n) akgk(n) = 0 , (17)

where S„ is an element of the sequence to be transformed, the a's are unknown scalars, the

g/(«)'s are given auxiliary sequences (which may depend on terms of the sequence S„

itself), and where k is a fixed integer. Rewriting Eq. (17) in terms of S„,

Sn = S + algl(n) + - + akgk(n) . (18)

The basic idea behind Eq. (18) is to attempt to fit the actual behavior of S„, as a function

of«, so that it may be extrapolated smoothly to the (unknown) limit, S. This fitting is

achieved through the particular choices of the functions g;(«)- By incrementing n in Eq.

(18) to n + k, one has k + 1 equations in k + 1 unknowns (the limit S and the scalars

ax,--,ak). By solving these equations, we obtain a sequence of estimates for the limit,

which we denote by El.n):

E? =

sn ■

gl(«) •

Sn+k

■ gi(n + k)

8k(») • ■ £*(" + £)
1

gxin) •

1

• &(« + *)

gk(") ■ • &(» + *)

(19)

17

It is assumed that the determinant in the denominator of Eq. (19) is not equal to zero.

Finally, note that Eq. (18) is the kernel of the transformation Eq. (19); that is, Eq. (18) is

the set of sequences for which there exists the sequence S such that, for all n, E[n) = S.

The E-algorithm is the recursive algorithm that allows one to compute the numbers

E(
k
n) without actually computing the determinants in Eq. (19). Given the following rules,

E<tt)=S„, » = 0,1,... (20a)

go? =&(")> " = 0,1,... and i = l,2,... , (20b)

then for k = 1, 2,... and » = 0,1,..., the main rule for the E-algorithm is

E-(«+l) _ p(«)
F(«) _ £(") _ ^*-l flfcL. „(«) (0]\
^k ^k-\ (n+\) In) &k-\,k » \Al)

where the gk"\k 's are auxiliary sequences computed by the following auxiliary rule:

(n+D _ (n)
p.(»)_p.(») s*-u &k-\,i (») i-fr+i k+? crr\
Sk,i - Sk-U („+i) _ („) Sk-\,k ■> / - Ä +1, «+ Z,... . \IL)

Sk-l,k Sk-\,k

C. LEVIN'S TRANSFORMS

Levin's method of generating non-linear transformations for increasing the rate of

convergence of sequences [Ref. 17: pp. 371-388] was first introduced in 1973. For

Levin's generalized transformation, the auxiliary sequences denoted by the g/(«)'s in the

E-transformation given in Eq. (19) take on the particular form:

&■(») = - -, (23)
yn

where x„ and y„ are themselves auxiliary sequences.

18

Levin's transforms are basically generalizations of Aitken's A2 process and of the

E-transformation corresponding to the first column of the E-algorithm as shown in

Eq. (21) [Ref. 11: p. 113], denoted as El. The kernel of Aitken's process is

Sn-S = a.AS„ ,

while the kernel of the transformation E, is of the form

(24)

Sn~S = tn-g(n) (25)

By definition in the Levin method, g(n) is taken to be an arbitrary polynomial of degree

(k -1) of the quantity (n)' . Also, /„ denotes the nth element of the series (as for example

Jh the n term of the Mie series). Thus, the sequences of Eq. (25) can be expressed as

S-S = t a1+a2(ny1 + - + ak(n) ■(*-i) (26)

Following Brezinski and Zaglia, multiplying both sides of Eq. (26) by {nf l and

rearranging terms yields

(w) -*7- = aM +o2(n) +- + ak (27)

By applying the operator A* to both sides of Eq. (27), the right hand side becomes

identically zero, since it is a polynomial of degree [k -1) in n. Therefore, for all n,

in)
(t-i) Sn-S

= 0 (28)
'" /

Since A* is a linear operator, the above expression can be also be expressed as

fn J

/<^^(*-]) >
= S-A* w

v n J
(29)

19

The numbers Ek, denoted now as the Levin estimate L$, are therefore given by

L" = ^((-r A.) ' <30)

Using the well-known formula [Ref. 11: p. 115]

A\,=I(-l)*C>n+, , (31)
k=0

where Ck
N is the binomial coefficient defined by

N N\
k\{N-k)\ '

(32)

Eq. (30) then becomes

ft(-l)
k{n + k)N~l^N\/k\{N-k)l

|-(")__*zl "+* I CXVl

£(-l)k(n + k)N-—Nl k\(N-k)\
k=\ K+k I

Equation (33) defines the sequence of Levin estimates for the limit of the series.

D. ENCODING THE LEVIN TRANSFORM

In the instances where the Levin code (Appendices C and L) was utilized, TN was

used to represent the partial sum Sn+k from Eq. (33) above. The sum TN is related to the

sequence h by the following expression:

^ = I>*. (34)

In other words, tk represents the individual term for the loop which calculates the

extinction efficiency factor Q^, and TN is the value for which Q^ converges to one part

20

in 108. Equation (33) was split into two individually calculated terms, P[N] and ß[N],

representing the numerator and denominator, respectively. Consequently, the following

equations result:

PiN^iti-lfikf-^Nl/kliN-ky. , and (35)

^N] = ±{-l)k{k)N-X^N\lk\{N-k)\ . (36)

Thus, Eq. (30) becomes

L")=T[N]=m ■ (37)

Equation (34) was encoded in order to calculate the Levin estimate of Q^, and the

number of terms needed for the Levin transform to cause the infinite series representation

of Q^ to converge was subsequently determined. This number was compared with that

which was obtained by direct slimming of the individual terms of the infinite series

representation of Q^ to convergence in order to determine if the Levin method

accelerated the convergence.

21

4 5
Size parameter x

Figure 2. Extinction Efficiency Factor vs. Size Parameter

22

IV. RESULTS

After completing the Mie code and producing values for the extinction efficiency

factor that agreed with the tabulated results of Van de Hülst, the result obtained from

applying the Levin method of series acceleration to the infinite series representation of a

Mie scattering parameter was somewhat anti-climactic, albeit not entirely unanticipated.

Simply put, the Levin method did not accelerate the convergence of the extinction

efficiency factor. In point of fact, the number of iterations required for the Levin method

to converge to a given accuracy was approximately the same, less one or two terms, as the

number of terms required by direct summation. Size parameters ranging from 0 to 100

were used in making this determination. Since the Levin method requires calls to

additional functions that calculate the log of a gamma function, the log of a factorial, and a

binomial coefficient at each iteration of the summation loop - the codes for which were

obtained from "Numerical Recipes in C" [Ref. 16] - this method is actually slower than

direct summation. It should also be noted that, for size parameters x > 108, the Levin

method fails entirely because the individual terms t„ become vanishingly small, producing

undefined output. The code used to determine Q^ via summing the infinite series and the

code utilizing the Levin estimate are included as Appendices I and J, respectively.

The C code used to produce the data used for the plot shown in Figure 2 was

slightly altered to determine the number of iterations required for the Mie series to

converge as a function of size parameter. The result is shown in Figure 3. Since both

methods of convergence required the same number of iterations, the code used for

23

summing the individual terms of the Mie series (Appendix G) was chosen to generate the

data used for the plot shown in Figure 3. A linear relationship can easily be seen for all

indices of refraction, with the number of terms in the series proportional to the size

parameter.

While a tremendous amount of effort was put forth to come to the conclusion that

the Levin method is unsuccessful in accelerating the convergence of the Mie series, the

work was not all for naught. An important question was answered, leading the way for

further research in this area.

3 4 5 6
Size parameter x

Figure 3. Rate Convergence vs. Size Parameter

24

V. CONCLUSION

In this thesis research we assembled the code to calculate the Mie coefficients,

integral components of all four of the Mie scattering parameters. Next, we calculated the

Mie extinction efficiency factor by summing the terms of the infinite series representation

to convergence. Several different indices of refraction were used, and a plot of the

extinction efficiency factor versus size parameter was produced. These results were found

to agree closely with that of Van de Hulst's authoritative work, thereby ensuring the

accuracy of the code. Finally, an algorithm for the Levin method of series transformation

was incorporated into the existing code. The rate of convergence was subsequently

determined and compared with the rate of convergence achieved by summing the

individual terms of the Mie series. Based on the results, we arrived at several important

conclusions.

First, the number of terms required to converge was found to be linearly related to

the size parameter. This included size parameters both within and outside the Mie regime.

The linear relationship continued until a limitation was reached, which leads us to our

second conclusion.

The magnitude of the size parameter was found to impose a limit on the extent to

which the Levin method was able to cause the Me series to converge. While a size

parameter of 108 is well beyond the Me scattering region and within the optical region, it

still points to a computational limit of the Levin method.

25

Most importantly, we have concluded that the Levin method of series

transformation did not accelerate the convergence of the Mie series. Several simulations

were run using size parameters ranging from less than one up to one hundred, and indices

of refraction ranging from one to two. All results showed a rate of convergence, insofar

as the number of iterations required, equal to the rate obtained by summing the individual

terms of the Mie series. This is an important result. There are other series transformation

methods in existence that may accelerate the convergence of the Mie series, and these

should be explored in their own right.

26

APPENDIX A: ALTERNATING HARMONIC SERIES CODE IN ANSI C

/* Thesis Program to calculate number of terms for alternating harmonic series to reach progressive */
/* digits of accuracy */
/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: ln2.c */

include <stdio.h>
include <math.h>
include <time.h>

intn;
int places = 1;

double AltHarmSum = 0.0;
double RoundedNew = 0.0;
double RoundedOld = 0.0;

float accuracy = 10.0;

main()
{
n = 0;

do{
n+=l;
AltHarmSum+=(double)(pow(-1 ,n+1)/n);
RoundedNew = floor(AltHarmSum*accuracy+.5)/accuracy;

if (RoundedNew = RoundedOld)
{
printf("\nlt took %d terms to reach %d digits of accuracy:", n, places);
printf("\n Sum = %f", AltHarmSum);
printfC*\n Time elapsed: %3.2f sec.\n", clock()/le6);
places+=l;
accuracy*=10.0;

}
RoundedOld = RoundedNew;

} while (places <= 15);
}

27

28

APPENDIX B. OUTPUT OF ALTERNATING HARMONIC SERIES CODE

It took 12 terms to reach 1 digits of accuracy:
Sum = 0.653211
Time elapsed: 0.00 sec.

It took 271 terms to reach 2 digits of accuracy:
Sum = 0.694989
Time elapsed: 0.00 sec.

It took 1417 terms to reach 3 digits of accuracy:
Sum = 0.693500
Time elapsed: 0.01 sec.

It took 177341 terms to reach 4 digits of accuracy:
Sum = 0.693150
Time elapsed: 1.33 sec.

It took 229300 terms to reach 5 digits of accuracy:
Sum = 0.693145
Time elapsed: 1.71 sec.

It took 1565239 terms to reach 6 digits of accuracy:
Sum = 0.693147
Time elapsed: 11.70 sec.

29

30

APPENDIX C: LEVIN ALGORITHM ON ALTERNATING HARMONIC SERIES

/* Thesis Program to apply Levin method to alternating harmonic series and compute number of terms */
/* for series to converge */
/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: ln21ev.c */

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>

#defme MAX 15

int k;

double T[MAX+1], t[MAX+l];

double a;

main()

{
T[0] = t[0] = 0.0;
k=l;

printf("\n\ni T[i] t[i] P[i]/Q[i]\n");

while(k<=MAX)
{
t[k] = (doubleX pow(-l,k+l)/k);
T[k] = T[k-l] + t[k];
k = k+l;

}
a = levin();

}

double levin()

{
double P[MAX+1],Q[MAX+1];
intl;
1=1;
P[0] = Q[0] = 0.0;
while(K=MAX)

{
P[l]=P[l-l]+pow(-l,l)*pow(l,MAX-l)*T[l]/t[l]*bico(MAX,l);
Q[l]=Q[l-l]+pow(-l,l)*pow(l,MAX-l)/t[l]*bico(MAX,l);
1=1+1;
printf("\n%d %f %f %f", i,T[i], t[i], P[i]/Q[i]);

}
return (P[MAX]/Q[MAX]);

}

31

double bico(int n, int k)
{ double factln(int n);

return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
}

double factln(int n)
{ double gammln(float xx);

static float a[101];
if(n<= 1) return 0.0;
if (n <= 100) return a[n] ? a[n]: (a[n]=gammln(n+1.0));
eise return gammln(n+1.0);

double gammln(float xx)
{ double x,y,tmp,ser;

static double cofl6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};

intj;
y=x=xx;
tmp=x+5.5;
tmp — (x+0.5)*log(tmp);
ser=1.000000000190015;
for (j=0;j<=5 J++) ser += coflj]/++y;
return -tmp+log(2.5066282746310005*ser/x);

}

32

APPENDIX D: ANSI C CODE TO PRODUCE DATA FOR ALTERNATING
HARMONIC SERIES PLOT

/* Thesis Program to produce data for plot of convergence of alternating harmonic series to ln(2) */
/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: ln2plot.c */

include <stdio.h>
include <math.h>
include <time.h>

intn;
int places = 1;

double AltHarmSum = 0.0;
double RoundedNew f 0.0;
double RoundedOld = 0.0;

float accuracy = 10.0;

main()

{
for(n= l;n<=51;n++) {

AltHarmSum+=(double)(pow(-1 ,n+1)/n);
RoundedNew = floor(AltHarmSum*accuracy+.5)/accuracy;

printf("\n%d %1.3f, n, log(2) - fabs(log(2) - AltHarmSum));
}

}

33

34

APPENDIX E. ANSI C CODE TO PRODUCE DATA FOR PLOT OF LEVIN
METHOD ON ALTERNATING HARMONIC SERIES

/* Thesis Program to produce data for plot of Levin method on the convergence of alternating */
/* harmonic series to ln(2) */
/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: ln21evplot.c */

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>
#include "nrutil.h"
#include "nrutil.c"
#include <time.h>

#defmeMAX16

double levin();
double bico(int, int);
double factln(int);
double gammln(float);
double T[MAX+1], t[MAX+l];
double a;

int k, i;

mainO
{
T[0] = t[0] = 0.0;
k=l;

while(k<=MAX)
{
t[k] = (double)(pow(-l,k+l)/k);
T[k] = T[k-l] + t[k];
k = k+l;

} /* end while */

a = levin();

} /* end main */

double levin()
{
double P[MAX+1], Q[MAX+1];
double commonTerm;
intN;
P[0] = Q[0] = 0.0;

for (N = 1; N <= MAX; N++)

35

{
for(k=l;k<=N;k++)
{
commonTerm = pow(-l,k)*pow(k,N-l)/t[k]*bico(N,k);
P[k] = P[k-1] + commonTerm*T[k];
Q[k] = Q[k-1] + commonTerm;

}

printf("\n%d %32.3 llf", k-1, log(2) - fabs(log(2) - P[N]/Q[N]));
} /* end for N loop */

prmtf("\n\n");
return (P[MAX]/Q[MAX]);

}

double bico(int n, int k)
{ double factln(int n);

return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
}

double factln(int n)
{ double gammln(float xx);

static float a[101];
if(n<= 1) return 0.0;
if (n <= 100) return a[n] ? a[n]: (a[n]=gammln(n+1.0));
else return gammln(n+1.0);

}

double gammln(float xx)
{ double x,y,tmp,ser;

static double cof[6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};

intj;
y=x=xx;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.000000000190015;
for ö=0y<=5y++) ser += cof[j]/++y;
return -tmp+log(2.5066282746310005*ser/x);

}

36

APPENDIX F. MATLAB CODE TO PRODUCE PLOT OF CONVERGENCE OF
ALTERNATING HARMONIC SERIES

/* Thesis Program to produce data for plot of Levin method on the convergence of alternating */
/* harmonic series to ln(2) */
/* LT Brian Johnson */
/* Software: Matlab Ver. 4.2C */
/* File Name: ln2comp.m */

load ln2graf-ascii
load ln21evgr -ascii
x = ln2graf(:,l);
y = ln2graf(:,2);

x2 = ln21evgr(:,l);
y2 = ln21evgr(:,2);

B = ones(l,71);
figure(l)
C = 0.99*B;
plot(x-l,y/log(2),x-l,C,':',x2-l,y2/log(2))
xlabel('Number of iterations')
ylabel('Partial Sum / ln2')
title ('Levin Method vs Infinite Sum for ln(2)')
axis([0 70 0 1])
gtext('0.99 -->')

37

38

APPENDIX G. ANSI C CODE TO PRODUCE DATA FOR EXTINCTION
EFFICIENCY FACTOR AND CONVERGENCE RATE VS SIZE PARAMETER

/* Thesis Program to produce data for plotting Q^ vs size parameter */

/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: Miegraph.c */

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
/* #include <iostream.h> */
#include <math.h>
#include "nrutil.h"
#include "nrutil.c"
#defineNRANSI
#defineEPS1.0e-10
#defineFPMIN1.0e-30
#defmeMAXIT 10000
#define XMIN 2.0
#defme PI 3.141592653589793
#defme RTPI02 1.2533141
#defmeNUSE15
#defineNUSE2 5

struct bessVec {
double rj, ry, rjp, ryp;

};

struct complex {
double real, imag;

};

void assignBessels(struct bessVec* besselsPtr, double rjdummy, double rydummy, double rjpdummy,
double rypdummy)
{

besselsPtr -> rj = rjdummy;
besselsPtr -> ry = rydummy;
besselsPtr -> rjp = rjpdummy;
besselsPtr -> ryp = rypdummy;

}

struct bessVec sphbes(double, int); /* Function Prototype */
struct bessVec bessjy(double, double); /* Function Prototype */

struct bessVec sphBesselsn; /* j's, y's & deriv's for Ricatti-Bes */
struct bessVec besselsnPlusHalf; /* for calculating J_n +/- half */
struct bessVec besselsnMinusHalf;
struct complex an, b_n; /* Mie coefficients */
struct complex zetan; /* Ricatti-Bessel m */
struct complex zetanMinusl;
struct complex denom; /* denominator in Mie coefficients */

39

double x; /* size parameter */
double m; /* refractive index (non-absorbing spheres) */
double JnMinusHalf, JnPlusHalf; /* for calculating Afactor */
double Afactor; /* psi-prime divided by psi */
double psi_nMinus 1; /* Ricatti-Bessel fh 1 st kind, initialized */
double psin;
double chi_n; /* Ricatti-Bessel fh 2nd kind */
double nOverx;
double aBraces, bBraces;
double numer; /* numerator in Mie coefficients */
double realDenom; /* rationalized denominator */
double sumQextOld, sumQext; /* Extinction efficiency factor */
double Q_ext[900][6]; /* array of Q_ext's, fh's of m and x */
int num[900][6]; /* number of iterations to converge, f(x,m) */
double conv= 1.0e-8;

int i; /* counter for x loop */
int j; /* counter for mArray loop */
int n; /* # iterations to converge, also order of bessel function */

main()
{
double mArray[6] = {1.25, 1.33, 1.44, 1.50, 1.55, 2.0};

for(j = 0;j<=5;j++){

m = mArray |j];

for(x = 0.01; x <=9.0; x+= 0.01) {

n = 0; /* initialize n for each x */
besselsnPlusHalf= bessjy(m*x, 0.5); /* initialize for Afactor */
JnPlusHalf = besselsnPlusHalf.rj;

psin = sin(x);
zeta_n.real = psin; /* initializing zeta */
zeta_n.imag = cos(x);

sum_Qext= 0.0;

do{
n = n + 1;
J_nMinusHalf = J_nPlusHalf;
psinMinusl = psin;
zetanMinusl = zetan;
sumQextOld = sumQext;

besselsnPlusHalf = bessjy(m*x, n + 0.5); /* calculating A factor */
JnPlusHalf = besselsnPlusHalf.rj;
AJactor = (J_nMinusHalf7J_nPlusHalf) - (n/(m*x));

40

sphBesselsn = sphbes(x, n); /* j's and y's for Ricatti Bess fin's */
psin = x * sphBessels_n.rj;
chin = -x * sphBessels_n.ry;
zeta_n.real = psin;
zetanimag = chin;

nOverx = n/x;
aBraces = (Ajfactor / m + nOverx);
bBraces = (A factor * m + nOverx);

numer = aBraces*psi_n - psi_nMinusl;

denom.real = (aBraces * zeta_n.real) - zetanMinusl.real;
denom.imag = (aBraces * zeta_n.imag) - zetanMinusl.imag;
realDenom = (denom.real*denom.real + denom.imag*denom.imag);

a_n.real = (numer * denom.real)/realDenom;
animag = (numer * denom.imag)/realDenom;

numer = bBraces*psi_n - psinMinusl;

denom.real = (bBraces * zeta_n.real) - zeta_nMinusl.real;
denom.imag = (bBraces * zeta_n.imag) - zetanMinusl.imag;
realDenom = (denom.real*denom.real + denom.imag*denom.imag);

b_n.real = (numer * denom.real)/realDenom;
b_n.imag = (numer * denom.imag)/realDenom;

sumQext += (2*n + l)*(a_n.real + b_n.real);

} while (fabs(sum Qext - sum QextOld) > conv); /* end do-while loop */

Q_ext[(int)(x* 100-l)]ö] = 2.0/(x*x)*sum_Qext;
num[(int)(x*100-l)][j] = n;

} /* end inner x-loop */
} /* end outer j-loop (for various m values) */

for (i = 0; i < 899; i++) {
printf("\n%f ", (i+1.0)/100.0);

for(j = 0;j<=5;j++)
printfC-yof ", Q_ext[i]D]);

/* printf("%d ", num[i][j]); */

} /* end i-j loop */

return 0;
}

struct bessVec sphbes(double x, int n)
«.

41

struct bessVec tempsphbessels;
struct bessVec bessels;

double sj, sy, sjp, syp;
void nrerror(char errortextfl);
double factor, order;

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes");
order=n+0.5;

bessels = bessjy(x,order);
factor=RTPI02/sqrt(x);
sj=factor*bessels.rj;
sy=factor*bessels.ry;
sjp=factor*bessels.rjp-(sj)/(2.0*x);
syp=factor*bessels.ryp-(sy)/(2.0*x);

assignBessels(&tempsphbessels, sj, sy, sjp, syp);

return tempsphbessels;

}

struct bessVec bessjy(double x, double xnu)
{

void merror(cliar error_text[]);

struct bessVec tempBessels;

double rj, ry, rjp, ryp;

voidbeschb(double x, double *gaml, double *gam2, double *gampl,
double *gammi);

int i,isign,l,nl;
double a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,dr,e,f^act,fact2,

fac^,ff,gam,gaml,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl,
rjll,rjmu,rjpl,rjpl,rjtemp,ryl,rymu,rymup,rytemp,sum,suml,
temp,w,x2,xi,xi2,xmu,xmu2;

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy");
nl=(x < XMIN ? (int)(xnu+0.5) : IMAX(0,(int)(xnu-x+1.5)));
xmu=xnu-nl;
xmu2=xmu*xmu;
xi=1.0/x;
xi2=2.0*xi;
w=xi2/PI;
isign=l;
h=xnu*xi;
if (h < FPMIN) h=FPMIN;
b=xi2*xnu;
d=0.0;
c=h;

42

for(i=l;i<=MAXIT;i++) {
b += xi2;
d=b-d;
if (fabs(d) < FPMIN) d=FPMIN;
c=b-1.0/c;
if (fabs(c) < FPMIN) c=FPMIN;
d=1.0/d;
del=c*d;
h=del*h;
if (d < 0.0) isign = -isign;
if (fabs(del-1.0) < EPS) break;

}
if (i > MAXIT) nrerror("x too large in bessjy; try asymptotic expansion");
rjl=isign*FPMTN;
rjpl=h*rjl;
rjll=rjl;
rjpl=rjpl;
fact=xnu*xi;
for (l=nl;l>=l;l~) {

rjtemp=fact*rjl+rjpl;
fact -= xi;
rjpl=fact*rjtemp-rjl;
rjl=rjtemp;

}
if(rjl==0.0)rjl=EPS;
f=rjpl/rjl;
if(x<XMTN){

x2=0.5*x;
pimu=PI*xmu;
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu));
d=-log(x2);
e=xmu*d;
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e);
beschb(xmu,&gaml,&gam2,&gampl,&gammi);
ff=2.0/PI*fact*(gaml*cosh(e)+gam2*fact2*d);
e=exp(e);
p=e/(gampl*PI);
q=1.0/(e*PI*gammi);
pimu2=0.5*pimu;
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2);
r=PI*pimu2*fact3 *fact3;
o=1.0;
d = -x2*x2;
sum=ff+r*q;
suml=p;
for (i=l;i<=MAXTT;i++) {

ff=(i*ff+p+q)/(i*i-xmu2);
c *= (d/i);
p /= (i-xmu);
q /= (i+xmu);
del=c*(ff+r*q);
sum += del;
dell=c*p-i*del;

43

} else {

suml +=dell;
if (fabs(del) < (1.0+fabs(sum))*EPS) break;

}
if (i > MAXTT) nrerror("bessy series failed to converge");
rymu = -sum;
ryl = -suml*xi2;
rymup=xmu*xi*rymu-ry 1;
rjmu=w/(rvmup-f*rvmu);

a=0.25-xmu2;
p = -0.5*xi;
q=1.0;
br=2.0*x;
bi=2.0;
fact=a*xi/(p*p+q*q);
cr=br+q*fact;
ci=bi+p*fact;
den=br*br+bi*bi;
dr=br/den;
di = -bi/den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;
for (i=2;i<=MAXTT;i++) {

a += 2*(i-l);
bi += 2.0;
dr=a*dr+br;
di=a*di+bi;
if (fabs(dr)+fabs(di) < FPMIN) dr=FPMTN;
fact=a/(cr*cr+ci*ci);
cr=br+cr*fact;
ci=bi-ci*fact;
if (fabs(cr)+fabs(ci) < FPMIN) cr=FPMIN;
den=dr*dr+di*di;
dr/=den;
di /= -den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;
if (fabs(dlr-1.0)+fabs(dli) < EPS) break;

}
if (i > MAXTT) nrerror("cf2 failed in bessjy");
gam=(p-f)/q;
rjmu=sqrt(w/((p-f)*gam+q));
rjmu=SIGN(rjmu,rjl);
rymu=rjmu*gam;
rymup=rymu*(p+q/gam);
ryl=xmu*xi*rymu-rymup;

44

}

fact=rjmu/rjl;
rj=rjll*fact;
rjp=rjpl*fact;
for(i=l;i<=nl;i-H-){

iytemp=(xmu+i)*xi2*ryl-rymu;
rymu=ryl;
ryl=rytemp;

}
ry=rymu;
ryp=xnu*xi*rymu-ry 1;

assignBessels(&tempBessels, rj, ry, rjp, ryp);

return tempBessels;

voidbeschb(double x, doable *gaml, double *gam2, double *gampl, double *gammi)
{

double chebev(double a, double b, double cQ, int m, double x);
double xx;
static double clQ = {

-1.142022680371172e0,6.516511267076e-3,
3.08709017308e-4,-3.470626964e-6,6.943764e-9,
3.6780e-ll,-1.36e-13};

static double c2[] = {
1.843740587300906e0,-0.076852840844786e0,
1.271927136655e-3,-4.971736704e-6,-3.3126120e-8,
2.42310e-10,-1.70e-13,-1.0e-15};

xx=8.0*x*x-1.0;
*gaml=chebev(-1.0,1.05cl,NUSEl,xx);
*gam2=chebev(-1.0,L0,c2,NUSE2,xx);
*gampl= *gam2-x*(*gaml);
*gammi= *gam2+x*(*gaml);

}

double chebev(double a, double b, double cQ, int m, double x)
{

void nrerror(char errortextQ);
double d = 0.0, dd = 0.0, sv, y, y2;
intj;

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev");
y2 = 2.0*(y=(2.0*x-a-b)/(b-a));
forö = m-l;j>=l;j-){

sv = d;
d = y2*d-dd + c[j];
dd = sv;

}
return y*d - dd + 0.5*c[0];

}

#undefEPS
45

#undefFPMIN
#undefMAXrr
#undefXMIN
#undefPI
#undefNRANSI
#undefNUSEl
#undefNUSE2
#undefRTPI02

46

APPENDIX H. MATLAB CODE TO PLOT OUTPUT OF CODE LISTED
IN APPENDIX G.

load Qout -ascii
x = Qout(:,l);
yl = Qout(:,2);
y2 = Qout(:,3);
y3 = Qout(:,4);
y4 = Qout(:,5);
y5 = Qout(:,6);
y6 = Qout(:,7);

step = 0.25;
xinc = step:step:8.75;
for i = l:(length(xinc)-l)
ylinc(i) = yl(100*xinc(i)+l);
y2inc(i) = y2(100*xinc(i)+l);
y3inc(i) = y3(100*xinc(i)+l);
y4inc(i) = y4(100*xinc(i)+l);
y5inc(i) = y5(100*xinc(i)+l);
y6inc(i) = y6(100*xinc(i)+l);

end

plot(x,yl,x,y2,x,y3,x,y4,x,y5,x,y6, xinc,ylinc,'.', xinc,y2inc,'x', xinc, y3inc,'*', xinc,y4inc,'+',
xinc,y5inc,'o', xinc, yöinc,'.')
axis([0,9,0,6])
xlabel('Size parameter x'), ylabel('Qext')
gtext('m = 2')
gtext('m = 1.55')
gtext(*m=1.50')
gtext('m= 1.44')
gtext('m=1.33')
gtext('m= 1.25')

load Qoutn -ascii
x = Qoutn(:,l);
yl = Qoutn(:,2);
y2 = Qoutn(:,3);
y3 = Qoutn(:,4);
y4 = Qoutn(:,5);
y5 = Qoutn(:,6);
y6 = Qoutn(:,7);

step = 0.25;
xinc = step:step:8.75;

for i = l:(length(xinc)-l)
ylinc(i) = yl(100*xinc(i)+l);
y2inc(i) = y2(100*xinc(i)+l);
y3inc(i) = y3(100*xinc(i)+l);
y4inc(i) = y4(100*xinc(i)+l);
y5inc(i) = y5(100*xinc(i)+l);

47

y6inc(i) = y6(100*xinc(i)+l);
end

plot(x,yl,,k',x,y2,'m',x,y3,,c',x,y4,,r',x,y5,'g',x,y6,'b', xinc,ylinc,'.k', xinc,y2inc,'xm', xinc, y3inc,'*c',
xinc,y4inc,'+r', xinc,y5inc,'og', xinc, y6inc,'.b')

xIabel('Size parameter x'), ylabel('# iterations to converge')

48

APPENDIX I. ANSI C CODE FOR CALCULATING EXTINCTION
EFFICIENCY FACTOR

/* Thesis Program for calculating Q^ as a function of user-defined size parameter */

/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: mie.c */

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>
#include "nrutil.h"
#include "nrutilx"
#defineNRANSI
#defineEPS1.0e-10
#defineFPMIN1.0e-30
#define MAXIT 10000
#defineXMIN2.0
#define PI 3.141592653589793
#define RTPI02 1.2533141
#defineNUSE15
#defineNUSE2 5

struct bessVec {
double rj, ry, rjp, ryp;

};

struct complex {
double real, imag;

};

void assignBessels(struct bessVec* besselsPtr, double rjdummy, double rydummy, double rjpdummy,
double rypdummy)
{

besselsPtr -> rj = rjdummy;
besselsPtr -> ry = rydummy;
besselsPtr -> rjp = rjpdummy;
besselsPtr -> ryp = rypdummy;

}

struct bessVec sphbes(double, int); /* Function Prototype */
struct bessVec bessjy(double, double); /* Function Prototype */

struct bessVec sphBesselsn;
struct bessVec besselsnPlusHalf;
struct bessVec besselsnMinusHalf;
struct complex an, b_n; /* Mie coefficients */
struct complex zetan;
struct complex zetanMinusl;
struct complex denom; /* denominator in Mie coefficients */

49

double x = 109.0; /* size parameter */
double m = 2.0; /* refractive index (non-absorbing spheres) */
double JnMinusHalf, JnPlusHalf;
double Afactor;
double psi_nMinusl; /* Ricatti-Bessel fh 1st kind, initialized */
double psin;
double chin;
double nOverx;
double aBraces, bBraces;
double numer;
double realDenom;

/* Ricatti-Bessel fh 2nd kind */

/* numerator in Mie coefficients */
/* rationalized denominator */

double sumQextOld, sumQext, Q_ext; /* Extinction efficiency factor */
double conv = 1.0e-8;

int n = 0; /* loop counter, also order of bessel function */

main()
{
bessels^nPlusHalf= bessjy(m*x, 0.5);
JnPlusHalf = besselsnPlusHalf.rj;

/* initialize for A factor */

psin = sin(x);
zeta_n.real = psi_n;
zeta_n.imag = cos(x);

/* initializing zeta */

sum_Qext = 0.0;

do{
n = n+l;
J_nMinusHalf = J_nPlusHalf;
psinMinusl = psin;
zetanMinusl = zetan;
sumQextOld = sumQext;

besselsnPlusHalf = bessjy(m*x, n + 0.5);
JnPlusHalf = bessels_nPlusHalf.rj;
A_factor = (J_nMinusHalf/J_nPlusHalf) - (n/(m*x));

/* calculating A factor */

sphBesselsn = sphbes(x, n);
psi_n = x * sphBessels_n.rj;
chin = -x * sphBessels_n.ry;
zeta_n.real = psin;
zeta_n.imag = chin;

/* j's and y's for Ricatti Bess fn's */

nOverx = n/x;
aBraces = (Afactor / m + nOverx);
bBraces = (Afactor * m + nOverx);

numer = aBraces*psi_n - psinMinusl;

denom.real = (aBraces * zetan.real) - zeta_nMinusl.real;
50

denom.imag = (aBraces * zetaaimag) - zetanMinusl.imag;
realDenom = (denom.real*denom.real + denom.imag*denom.imag);

an.real = (numer * denom.real)/realDenom;
a_n.imag = (numer * denom.imag)/realDenom;

numer = bBraces*psi_n - psi_nMinus 1;

denom.real = (bBraces * zeta_n.real) - zetanMinusl.real;
denom.imag = (bBraces * zeta_n.imag) - zeta_nMinusl.imag;
realDenom = (denom.real*denom.real + denom.imag*denom.imag);

b_n.real = (numer * denom.real)/realDenom;
b_n.imag = (numer * denom.imag)/realDenom;

sumQext += (2*n + l)*(a_n.real + b_n.real);

} while (fabs(sum_Qext - sum_Qext01d) > conv);

Qjjxt = 2.0/(x*x)*sum_Qext;

printf("\n\nThe Extinction Efficiency Factor is: Qext = %f", Q_ext, "\n\n");
printf("\nNumber of iterations: %d\n", n);
printf("\nx = %3.2f m = %1.2f \n\n", x, m);
return 0;
}

struct bessVec sphbes(double x, int n)
{

struct bessVec tempsphbessels;
struct bessVec bessels;

double sj, sy, sjp, syp;
void nrerror(cbar error_text[]);
double factor, order;

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes");
order=n+0.5;

bessels = bessjy(x,order);
factor=RTPI02/sqrt(x);
sj=factor*bessels.rj;
sy=factor*bessels.ry;
sjp=factor*bessels.rjp-(sj)/(2.0*x);
syp=factor*bessels.ryp-(sy)/(2.0*x);

assignBessels(&tempsphbessels, sj, sy, sjp, syp);

return tempsphbessels;
}

struct bessVec bessjy(double x, double xnu)
{

51

void nrerror(char error_text[]);

struct bessVec tempBessels;

double rj, ry, rjp, ryp;

void beschb(double x, double *gaml, double *gam2, double *gampl,
double *gammi);

int i,isign,l,nl;
double a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,dr,e,f,fact,fact2,

fact3,flf,gam,gaml,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl,
ijll,gmu,ijpl,ijpl,ijtemp,iyl,rymu,rymup,rytemp,sum,suml,
temp,w,x2,xi,xi2,xmu,xmu2;

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy");
nl=(x < XMTN ? (int)(xnu+0.5): IMAX(0,(int)(xnu-x+1.5)));
xmu=xnu-nl;
xmu2=xmu*xmu;
xi=1.0/x;
xi2=2.0*xi;
w=xi2/PI;
isign=l;
h=xnu*xi;
if (h < FPMTN) h=FPMTN;
b=xi2*xnu;
d=0.0;
c=h;
for (i=l;i<=MAXTT;i-H-) {

b += xi2;
d=b-d;
if (fabs(d) < FPMTN) d=FPMTN;
c=b-1.0/c;
if (fabs(c) < FPMTN) c=FPMTN;
d=1.0/d;
del=c*d;
h=del*h;
if (d < 0.0) isign = -isign;
if (fabs(del-1.0) < EPS) break;

}
if (i > MAXTT) nrerror(nx too large in bessjy; try asymptotic expansion");
rjl=isign*FPMrN;
rjpl=h*rjl;
rjll=rjl;
rjpl=rjpl;
fact=xnu*xi;
for(l=nl;l>=l;l-){

rjtemp=fact*rjH-rjpl;
fact -= xi;
rjpl=fact*rjtemp-rjl;
rjl=rjtemp;

}
if(rjl==0.0)rjl=EPS;

52

f=rjpl/rjl;
if(x<XMIN){

x2=0.5*x;
pimu=PI*xmu;
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu»;
d=-log(x2);
e=xmu*d;
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e);
beschb(xmu,&gaml,&gam2,&gampl,&gammi);
ff=2.0/PI*fact*(gaml*cosh(e)+gam2*fact2*d);
e=exp(e);
p=e/(gampl*PI);
q=1.0/(e*PI*gammi);
pimu2=0.5*pimu;
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2);
r=PI*pimu2*fact3*foct3;
c=1.0;
d=-x2*x2;
sum=ff+r*q;
suml=p;
for (i=l;i<=MAXIT;i++) {

ff=(i*ff+p+q)/(i*i-xmu2);
c *= (d/i);
p /= (i-xmu);
q/=(i+xmu);
del=c*(ff+r*q);
sum += del;
dell=c*p-i*del;
suml+=dell;
if (fabs(del) < (1.0+fabs(sum))*EPS) break;

}
if (i > MAXTT) nrerror("bessy series failed to converge");
rymu = -sum;
ryl = -suml*xi2;
rymup=xmu*xi*rymu-ryl;
rjmu=w/(rymup-f*rymu);

} else{
a=0.25-xmu2;
p = -0.5*xi;
q=10;
br=2.0*x;
bi=2.0;
fact=a*xi/(p*p+q*q);
cr=br+q*fact;
ci=bi+p*fact;
den=br*br+bi*bi;
dr=br/den;
di = -bi/den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;

53

for (i=2;i<=MAXrT;i++) {
a+=2*(i-l);
bi += 2.0;
dr=a*dr+br;
di=a*di+bi;
if (fabs(dr)+fabs(di) < FPMTN) dr=FPMIN;
fact=a/(cr*cr+ci*ci);
cr=br+cr*fact;
ci=bi-ci*fact;
if (fabs(cr)+fabs(ci) < FPMTN) cr=FPMIN;
den=dr*dr+di*di;
dr /= den;
di /= -den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;
if (fabs(dlr-1.0)+fabs(dli) < EPS) break;

}
if (i > MAXTT) nrerror("cf2 failed in bessjyH);
gam=(p-f)/q;
rjmu=sqrt(w/((p-f)*gam+q));
rjmu=SIGN(rjmu,rjl);
rymu=rjmu*gam;
iymup=rymu*(p+q/gam);
ryl=xmu*xi*iymu-rymup;

>
fact=rjmu/rjl;
rj=rjll*fact;
rjp=rjpl*fact;
for (i=l;i<=nl;i++) {

rytemp=(xmu+i)*xi2*ryl-rymu;
rymu=ryl;
ryl=rytemp;

}
ry=rymu;
ryp=xnu*xi*rymu-ryl;

assign6essels(&tempBessels, rj, ry, rjp, ryp);

return tempBessels;

}

void beschb(double x, double *gaml, double *gam2, double *gampl, double *gammi)
{

double chebev(double a, double b, double cFJ, int m, double x);
double xx;
static double clQ = {

-1.142022680371172e0,6.516511267076e-3,
3.08709017308e-4,-3.470626964e-6,6.943764e-9,
3.6780e-ll,-1.36e-13};

static double c2Q = {
54

1.843740587300906e0,-0.076852840844786e0,
1.271927136655e-3,-4.971736704e-6,-3.3126120e-8.
2.42310e-10,-1.70e-13,-1.0e-15};

xx=8.0*x*x-1.0;
*gaml=chebev(-1.0,1.0,cl,NUSEl,xx);
*gam2=chebev(-l .0,1.0,c2,NUSE2,xx);
*gampl= *gam2-x*(*gaml);
*gammi= *gam2+x*(*gaml);

}

double chebev(double a, double b, double c[], int m, double x)
{

void nrerror(char errorJextQ);
double d = 0.0, dd = 0.0, sv, y, y2;
intj;

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev");
y2 = 2.0*(y=(2.0*x-a-b)/(b-a));
for(j = m-l;j>=l;j-){

sv = d;
d = y2*d-dd + c[j];
dd = sv;

}
return y*d-dd + 0.5*c[0];

}

#undefEPS
#undefFPMIN
#undefMAXIT
#undefXMIN
#undefPI
#undefNRANSI

#undefNUSEl
#undefNUSE2

#undefRTPI02

55

56

APPENDIX J. ANSI C CODE FOR LEVIN ALGORITHM OPERATING ON
EXTINCTION EFFICIENCY FACTOR

/* Thesis Program for applying the Levin method on the extinction efficiency factor and determining */
/* the resulting rate of convergence */
/* LT Brian Johnson */
/* Compiler: Borland C++ Ver. 5.0 */
/* File Name: mielevin.c */

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <math.h>
#include "nrutil.h"
#include "nrutil.c"
#defineNRANSI
#defineEPS1.0e-10
#defineFPMIN1.0e-30
#define MAXIT 10000
#define XMTN 2.0
#defme PI 3.141592653589793
#define RTPI02 1.2533141
#defmeNUSE15
#defmeNUSE2 5
#defme MAX 1036

struct bessVec {
double rj, ry, rjp, ryp;

};

struct complex {
double real, imag;

};

void assignBessels(struct bessVec* besselsPtr, double rjdummy, double rydummy, double rjpdummy,
double rypdummy)
{

besselsPtr -> rj = rjdummy;
besselsPtr -> ry = rydummy;
besselsPtr -> rjp = rjpdummy;
besselsPtr -> ryp = rypdummy;

}

struct bessVec sphbes(double, int); /* Function Prototype */
struct bessVec bessjy(double, double); /* Function Prototype */

double levin(); /* Function Prototype */
double bico(int, int); /* Function Prototype */
double factln(int); /* Function Prototype */
double gammln(double); /* Function Prototype */

struct bessVec sphBesselsn;

57

struct bessVec besselsnPlusHalf;
struct bessVec besselsnMinusHalf;
stract complex an, b_n; /* Mie coefBcients */
struct complex zetan;
struct complex zetanMinusl;
struct complex denom; /* denominator in Mie coefficients */

double x = 1000.0; /* size parameter */
double m = 2.0; /* refractive index (non-absorbing spheres) */
double JnMinusHalf, JnPlusHalf;
double Afactor;
double psinMinusl; /* Ricatti-Bessel fh 1st kind, initialized */
double psin;
double chin; /* Ricatti-Bessel fh 2nd kind */
double nOverx;
double aBraces, bBraces;
double numer; /* numerator in Mie coefficients */
double realDenom; /* rationalized denominator */
double sumQextOld, sumQext, Q_ext; /* Extinction efficiency factor */
double T[MAX+1], t[MAX+l];
double a;

int n = 0; /* loop counter, also order of bessel function */
intmArrayt] = {1.25, 1.33, 1.44, 1.50, 1.55, 2.0};
intk;

mainO
{
T[0] = t[0] = 0.0;
n = 0;
printf("\n\ni T_i t_i P[i]/Q[i]\nB);

bessels_nPlusHalf = bessjy(m*x, 0.5); /* initialize for Afactor */
J_nPlusHalf = besselsnPlusHalf.rj;

psin = sin(x);
zeta_n.real = psin; /* initializing zeta */
zeta_n.imag = cos(x);

sum_Qext = 0.0;

while (n<=MAX)
{
n = n+l;
J_nMinusHalf = J_nPlusHalf;
psinMinusl = psin;
zetanMinusl = zetan;
sumQextOld = sumQext;

besselsnPlusHalf = bessjy(m*x, n + 0.5); /* calculating A factor */
JnPlusHalf = besselsnPlusHalf.rj;
A_factor = (J_nMinusHalf7J_nPlusHalf) - (n/(m*x));

58

sphBesselsjn = sphbes(x, n); /* j's and y's for Ricatti Bess fn's */
psi_n = x * sphBessels_n.rj;
chin = -x * sphBessels_n.ry;
zetan.real = psin;
zeta_n.imag = chin;

nOverx = n/x;
aBraces = (A factor / m + nOverx);
bBraces = (Afactor * m + nOverx);

numer = aBraces*psi_n - psinMinusl;

denom.real = (aBraces * zeta_n.real) - zetanMinusl.real;
denomimag = (aBraces * zeta_n.imag) - zeta_nMinusl.imag;
realDenom = (denom.real*denom.real + denom.imag*denom.imag);

a_n.real = (numer * denom.real)/realDenom;
a_n.imag = (numer * denom.imag)/realDenom;

numer = bBraces*psi_n - psi_nMinusl;

denom.real = (bBraces * zeta_n.real) - zetanMinusl.real;
denom.imag = (bBraces * zeta_n.imag) - zeta_nMinusl.imag;
realDenom = (denom.real*denom.real + denom.imag*denom.imag);

b_n.real = (numer * denom.real)/realDenom;
b_n.imag = (numer * denom.imag)/realDenom;

t[n] = 2.0/(x*x)*(2*n + l)*(a_n.real + b_n.real);
T[n] = T[n-l] + t[n];

} /* end while loop */

a = levinO;

printf("\nx = %3.2f m = %1.2f \n\n", x, m);

return 0;
}

struct bessVec sphbes(doüble x, int n)
{

struct bessVec tempsphbessels;
struct bessVec bessels;

double sj, sy, sjp, syp;
void nrerror(char errortextrj);
double factor, order;

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes");
order=n+0.5;

bessels = bessjy(x,order);
59

}

factor=RTPI02/sqrt(x);
sj=factor*bessels.rj;
sy=factor*bessels. ry;
sjp=factor*bessels.rjp-(sj)/(2.0*x);
syp=factor*bessels.ryp-(sy)/(2.0*x);

assignBessels(&tempsphbessels, sj, sy, sjp, syp);

return tempsphbessels;

struct bessVec bessjy(double x, double xnu)
{

void nrerror(char error_text[]);

struct bessVec tempBessels;

double rj, ry, rjp, ryp;

voidbeschb(double x, double *gaml, double *gam2, double *gampl,
double *gammi);

int i,isign,l,nl;
double a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,dr,e,f,fact,fact2,

fact3,ff,gam,gaml,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl,
qll,rjmu,rjpl,rjpl,rjtemp,ryl,rymu,rymup,rytemp,sum,suml,
temp,w,x2,xi,xi2,xmu,xmu2;

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy");
nl=(x < XMTN ? (int)(xnu+0.5) : IMAX(0,(int)(xnu-x+1.5)));
xmu=xnu-nl;
xmu2=xmu*xmu;
xi=1.0/x;
xi2=2.0*xi;
w=xi2/PI;
isign=l;
h=xnu*xi;
if (h < FPMTN) h=FPMIN;
b=xi2*xnu;
d=0.0;
c=h;
for(i=l;i<=MAXIT;i++) {

b+=xi2;
d=b-d;
if (fabs(d) < FPMTN) d=FPMIN;
c=b-1.0/c;
if (fabs(c) < FPMTN) c=FPMTN;
d=1.0/d;
del=c*d;
h=del*h;
if (d < 0.0) isign = -isign;
if (fabs(del-l.O) < EPS) break;

}
60

if (i > MAXTT) nrerror("x too large in bessjy; try asymptotic expansion");
rjl=isign*FPMIN;
rjpl=h*rjl;
rjll=rjl;
rjpl=rjpl;
fact=xnu*xi;
for (l=nl;l>=l;l~) {

rjtemp=fact*rjl+rjpl;
fact -= xi;
rjpl==fact*rjtemp-rjl;
rjl=rjtemp;

}
if(rjl==0.0)rjl=EPS;
f=rjpl/rjl;
if(x<XMIN){

x2=0.5*x;
pimu=PI*xmu;
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu));
d=-log(x2);
e=xmu*d;
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e);
beschb(xmu,&gaml,&gam2,&gampl,&gammi);
ff=2.0/PI*fact*(gaml*cosh(e)+gam2*fact2*d);
e=exp(e);
p=e/(gampl*PI);
q=1.0/(e*PI*gammi);
pimu2=0.5*pimu;
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2);
r=PI*pimu2*fact3*fact3;
c=1.0;
d=-x2*x2;
sum=ff+r*q;
suml=p;
for (i=l;i<=MAXTT;i++) {

ff=(i*ff+p+q)/(i*i-xmu2);
c *= (d/i);
p /= (i-xmu);
q /= (i+xmu);
del=c*(ff+r*q);
sum += del;
dell=c*p-i*del;
suml += dell;
if (fabs(del) < (1.0+fabs(sum))*EPS) break;

}
if (i > MAXTT) nrerror("bessy series failed to converge");
rymu = -sum;
ryl = -suml*xi2;
rymup=:xmu*xi*rymu-ryl;
rjmu=w/(rymup-f*rymu);

} else {
a=0.25-xmu2;
p=-0.5*xi;
q=1.0;

61

br=2.0*x;
bi=2.0;
fact=a*xi/(p*p+q*q);
cr=bH-q*fact;
ci=bi+p*fact;
den=br*br+bi*bi;
dr=br/den;
di = -bi/den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;
for (i=2;i<=MAXTT;i++) {

a+=2*(i-l);
bi+=2.0;
dr=a*dr+br;
di=a*di+bi;
if (fabs(dr)+fabs(di) < FPMIN) dr=FPMIN;
fact=a/(cr*cn-ci*ci);
cr=br+cr*fact;
ci=bi-ci*fact;
if (fabs(cr)+fabs(ci) < FPMIN) cr=FPMTN;
den=dr*dr+di*di;
dr /= den;
di /= -den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr,
p=temp;
if (fabs(dlr-1.0)+fabs(dli) < EPS) break;

>
if (i > MAXTT) nrerror("cf2 failed in bessjy");
gam=(p-f)/q;
rjmu=sqrt(w/((p-f)*gam+q));
rjmu=SIGN(rjmu,rjl);
rymu=rjmu*gam;
rymup=iymu*(p+q/gam);
tyl=xmu*xi*rymu-rymup;

}
fact=rjmu/rjl;
rj=rjll*fact;
rjp=rjpl*fact;
for(i=l;i<=nl;i++){

rytemp=(xmu+i)*xi2*ryl-rymu;
rymu=ryl;
ryl=rytemp;

}
ry=iymu;
ryp=xnu*xi*iymu-ry 1;

assignBessels(&tempBessels, rj, ry, rjp, typ);
62

return tempBessels;
}

voidbeschb(double x, double *gaml, double *gam2, double *gampl, double *gammi)
{

double chebev(double a, double b, double c[], int m, double x);
double xx;
static double cl[] = {

-1.142022680371172e0,6.516511267076e-3,
3.08709017308e-4,-3.470626964e-6,6.943764e-9,
3.6780e-ll,-1.36e-13};

static double c2[] = {
1.843740587300906e0,-0.076852840844786e0,
1.271927136655e-3,-4.971736704e-6,-3.3126120e-8,
2.42310e-10,-1.70e-13,-1.0e-15};

xx=8.0*x*x-1.0;
*gaml=chebev(-1.0,1.0,cl,NUSEl,xx);
*gam2=chebev(-1.0,1.0,c2,NUSE2,xx);
*gampl= *gam2-x*(*gaml);
*gammi= *gam2+x*(*gaml);

}

double chebev(double a, double b, double c[], int m, double x)
{

void nrerror(char errortextQ);
double d = 0.0, dd = 0.0, sv, y, y2;
intj;

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev");
y2 = 2.0*(y=(2.0*x-a-b)/(b-a));
for(j = m-l;j>=l;j-){

sv = d;
d = y2*d-dd + cöl;
dd = sv;

}
return y*d - dd + 0.5*c[0];

}

double levin()
{
double P[MAX+1], Q[MAX+1];
double commonTerm;
intN;
P[0] = Q[0] = 0.0;

for (N = 1; N <= MAX; N++)
{
for(k=l;k<=N;k++)
{
commonTerm = pow(-l,k)*pow(k,N-l)/t[k]*bico(N,k);
P[k] = P[k-1] + commonTerm*T[k];

63

Q[k] = Q[k-1] + commonTenn;
}
printf("\n%d %f %f %f ",k-1,T[N], t[N], P[N]/Q[NJ);

}
printf("\n\n");
return (P[MAX]/Q[MAX]);

}

double bico(int n, int k)
{ double factln(int n);

return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
}

double factln(int n)
{ double gammln(double xx);

static double a[101];
if(n<=l) return 0.0;
if (n <= 100) return a[n] ? a[n]: (a[n]=gammln(n+1.0));
else return gammln(n+1.0);

double gammln(double xx)
{ double x,y,tmp,ser;

static double cof[6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};

intj;
y=x=xx;
tmp=x+5.5;
top -= (x+0.5)*log(tmp);
ser=1.000000000190015;
for (j=0J<=5 j++) ser += cof[j]/++y;
return -tmp+log(2.5066282746310005*ser/x);

}

#undefEPS
#undefFPMIN
#undefMAXTT
#undefXMTN
#undefPI
#undefNRANSI

#undefNUSEl
#undefNUSE2
#undefRTPI02

64

LIST OF REFERENCES

1. Illingworth, V., Dictionary of Physics, London: Penguin Books, Ltd., 1991.

2. Biblarz, O. and Netzer, D.W., Evaluation ofUTSI-CLA Program on Optical
measurements of Turbine Engine Exhaust Particulates, Monterey: Naval
Postgraduate School, 1994.

3. Hansen, M.G. and Cram, L.A., Mie Scattering as a Technique for the Sizing of Air
Bubbles, Mississippi: University of Mississippi, 1983.

4. Diermendjian, D., "Scattering and Polarization Properties of Water Clouds and Hazes
in the Visible and Infrared", Applied Optics, Vol. 3, pp. 187-196, 1964.

5. Fahler, T.S. and Bryant, H.C., "Optical Back Scattering from Single Water Droplets",
American Journal Optics Society, Vol. 58, pp. 304-310, 1968.

6. Chromey, F.C., "Evaluation of Mie Equations for Colored Spheres", J. Opt. Soc. Am.,
Vol. 50, pp. 730-737,1960.

7. Stull, V.R. and Plass, G.N., "Emissivity of Dispersed Carbon Particles", J. Opt. Soc.
Am., Vol. 50, pp. 121-129,1960.

8. Lam, D.M. and Rossiter, B.W., "Chromoskedasic Painting", Scientific American, Nov.
1991.

9. Domb, C. and Lebowitz, J.L., Phase Transitions and Critical Phenomena, San Diego:
Academic Press Inc., 1989.

10. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, New York:
Dover Publications, Inc., 1972.

11. Brezinski, C. and Zaglia, M.R., Extrapolation Methods Theory and Practice, New
York: Selsevier Science Publishing Co., 1991.

12. Diermendjian, D., Electromagnetic Scattering on Spherical Polydispersions, New
York: American Elsevier Publishing Company, 1969.

13. Edde, B., Radar Principles, Technology, Applications, New Jersey: Prentice Hall,
1993.

14. Van de Hülst, H.C., Light Scattering by Small Particles, New York: Dover
Publications, Inc., 1981.

65

15. Wiscombe, W.J., "Mie Scattering Calculations: Advances in Technique and Fast,
Vector-Speed Computer Codes", Boulder, Colorado: National Center for
Atmospheric Research, 1996.

16. Press, W.H., Numerical Recipes in C, Td Edition, New York: Cambridge University
Press, 1992.

17. Levin, D., International Journal of Computer Math, Vol. 3, pg. 371, 1973.

66

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Professor William Maier
Chairman, Department of Physics, Code PH/Mw
Naval Postgraduate School
Monterey, California 93943

Professor James Luscombe ,
Department of Physics, Code PH/Lj
Naval Postgraduate School
Monterey, California 93943

5. LT Brian E. Johnson.
11213 Wild Oak Dr.
Oakdale, CA 95361

Marion Johnson
7300 S. Forbes Rd.
Lincoln, CA 95646

67

